poltocar~ Reference

Signal Polar to Cartesian coordinate conversion

poltocar~

Description

poltocar~ will take any given signal as a polar coordinate and output the cartesian conversion of that signal.

Examples

poltocar~ converts amplitude/phase pairs into the Cartesian pairs that fftout~ uses

Arguments

None.

Attributes

Common Box Attributes

annotation [symbol]

Sets the text that will be displayed in the Clue window when the user moves the mouse over the object.

background [int] (default: 0)

Adds or removes the object from the patcher's background layer. background 1 adds the object to the background layer, background 0 removes it. Objects in the background layer are shown behind all objects in the default foreground layer.

color [4 floats]

Sets the color for the object box outline.

fontface [int]

Sets the type style used by the object. The options are:

plain
bold
italic
bold italic Possible values:

0 = 'regular'
1 = 'bold'
2 = 'italic'
3 = 'bold italic'

fontname [symbol]

Sets the object's font.

fontsize [float]

Sets the object's font size (in points). Possible values:

'8'
'9'
'10'
'11'
'12'
'13'
'14'
'16'
'18'
'20'
'24'
'30'
'36'
'48'
'64'
'72'

hidden [int] (default: 0)

Toggles whether an object is hidden when the patcher is locked.

hint [symbol]

Sets the text that will be displayed in as a pop-up hint when the user moves the mouse over the object in a locked patcher.

ignoreclick [int] (default: 0)

Toggles whether an object ignores mouse clicks in a locked patcher.

jspainterfile [symbol]

JS Painter File

patching_rect [4 floats] (default: 0. 0. 100. 0.)

Sets the position and size of the object in the patcher window.

position [2 floats]

g/s(set)

Sets the object's x and y position in both patching and presentation modes (if the object belongs to its patcher's presentation), leaving its size unchanged.

presentation [int] (default: 0)

Sets whether an object belongs to the patcher's presentation.

presentation_rect [4 floats] (default: 0. 0. 0. 0.)

Sets the x and y position and width and height of the object in the patcher's presentation, leaving its patching position unchanged.

rect [4 floats]

g/s(set)

Sets the x and y position and width and height of the object in both patching and presentation modes (if the object belongs to its patcher's presentation).

size [2 floats]

g/s(set)

Sets the object's width and height in both patching and presentation modes (if the object belongs to its patcher's presentation), leaving its position unchanged.

textcolor [4 floats]

Sets the color for the object's text in RGBA format.

textjustification [int]

Sets the justification for the object's text. Possible values:

0 = 'left'
1 = 'center'
2 = 'right'

varname [symbol]

Sets the patcher's scripting name, which can be used to address the object by name in pattr, scripting messages to thispatcher, and the js object.

Messages

signal

In left inlet: The magnitude (amplitude) of the frequency bin to be converted into a cartesian (real/imaginary) signal pair.

In right inlet: The phase of the frequency bin to be converted into a cartesian (real/imaginary) signal pair.

Output

signal

Out left outlet: The real part of a frequency domain signal suitable for input into an ifft~ or fftout~ object.

Out right outlet: The imaginary part of a frequency domain signal suitable for input into an ifft~ or fftout~ object.

See Also

Name Description
Spectral Processing Spectral Processing
cartopol Convert cartesian to polar coordinates
cartopol~ Signal Cartesian to Polar coordinate conversion
fft~ Fast Fourier transform
fftin~ Input for a patcher loaded by pfft~
fftinfo~ Report information about a patcher loaded by pfft~
fftout~ Output for a patcher loaded by pfft~
frameaccum~ Compute "running phase" of successive phase deviation frames
framedelta~ Compute phase deviation between successive FFT frames
ifft~ Inverse fast Fourier transform
pfft~ Spectral processing manager for patchers
poltocar Convert polar to cartesian coordinates
vectral~ Vector-based envelope follower
MSP Analysis Tutorial 4: Signal Processing with pfft~ MSP Analysis Tutorial 4: Signal Processing with pfft~