A newer version of Max is available. Click here to access the latest version of the documentation

bitand~ Reference

Bitwise and-operation of floating point signals

bitand~

Description

Use the bitand~ object to perform a bitwise intersection (a bitwise "and") on two incoming floating-point signals as either raw 32-bit data or as integer values. The output is a floating-point signal composed of those bits which are 1 in both numbers.

Examples

Arguments

bitmask [int]

Optional

Sets the bitmask to be used by the bitand~ object. The default is 0. An integer value can be used as a bitmask regardless of the mode; the binary representation of this integer is the bitmask.

operational-mode [int]

Optional

Specifies whether the floating-point signal or floating-point values will be processed as raw 32-bit floating-point values or converted to integer values for the bitwise operation. The modes of operation are listed below:

0: Treat both floating-point signal inputs as raw 32-bit values (default).
1: Convert both floating-point signal inputs to integer values.
2: Treat the floating-point signal in the left inlet as a raw 32-bit value
3: Convert the floating-point signal in the left inlet to an integer and treat the right input as a raw 32-bit value.

Attributes

Common Box Attributes

Messages

int

Arguments

bitmask [int]
In right inlet: An integer value can be used as a bitmask when supplied to the right inlet of the bitand~ object, provided that the proper mode is set.

float

Arguments

bitmask [float]
In right inlet: A floating-point value can be used as a bitmask when supplied to the right inlet of the bitand~ object, provided that the proper mode is set.

bits

Arguments

bitmask [list]
In left inlet: The word bits, followed by a list containing 32 ones or zeros, specifies a bitmask to be used by bitand~. Alternately, a bitmask value can be set by using an int value in the right inlet.

mode

Arguments

behavioral-flag [int]
In left inlet: The word mode, followed by a zero or one, specifies whether the floating signal or floating-point values will be processed as a raw 32-bit floating-point value or converted to an integer value for the bitwise operation. The modes of operation are:

0: Treat both floating-point signal inputs as raw 32-bit values (default).
1: Convert both floating-point signal inputs to integer values.
2: Treat the floating-point signal in the left inlet as a raw 32-bit value and treat the value in the right inlet as an integer.
3 - Convert the floating-point signal in the left inlet to an integer and treat the right input as a raw 32-bit value.

Note: If you convert the floating-point signal input to an integer and then convert it back, the resulting floating-point value will retain only 24 bits of integer resolution.

signal

In left inlet: The floating-point signal is compared, in binary form, with the floating-point signal in the right inlet. The signal can be treated as either a floating-point signal or as an integer.
In right inlet: The floating-point signal to be compared with the signal in the left inlet. The signal can be treated as either a floating-point signal or as an integer.
The raw floating-point signal bit values are expressed in the following form:
<1 sign bit> <8 exponent bits> <23 mantissa bits>

Output

signal

The two floating-point signals or ints received in the inlets are compared, one bit at a time. If a bit is 1 in both numbers, it will be 1 in the output number, otherwise it will be 0 in the output floating-point signal.

See Also

Name Description
bitshift~
bitor~
bitxor~
bitnot~