mc.fffb~

Fast fixed filter bank (multichannel)

Description

The fffb~ object implements a bank of bandpass filter objects, each of which is similar to the reson~ filter object. An input signal is applied to all filters, and the outputs of each filter are available separately. When the fffb~ object is instantiated as mcs.fffb~ the object has a single multichannel output containing the individual filters. Otherwise it has a separate outlet for each filter.

Discussion

This object is more efficient than using a number of reson~ objects, but for the sake of speed does not accept signals for parameter changes.

Arguments

number-of-filters [int]

The first argument specifies the number of filters.

1st-filter-frequency [float]

Optional

Three additional float arguments may be used to specify the frequency of the first filter, the ratio of frequencies between successive filters, and the Q factor for all of the filters.

filter-frequency-ratios (float) [float]

Optional

Following the initial first filter frequency, a list is used to specify the ratio of frequencies between successive filters.

Q [list]

Optional

Following the initial first filter frequency and frequency ratio arguments, a third argument specifies the Q applied to all filters.

harmonic-series-flag (H) [symbol]

Optional

If you use the letter H as the second argument rather than a float, the filters will be tuned to a harmonic series rather using frequency ratios.

Attributes

Common Box Attributes

annotation [symbol]

Sets the text that will be displayed in the Clue window when the user moves the mouse over the object.

background [int] (default: 0)

Adds or removes the object from the patcher's background layer. background 1 adds the object to the background layer, background 0 removes it. Objects in the background layer are shown behind all objects in the default foreground layer.

color [4 floats]

Sets the color for the object box outline.

fontface [int]

Sets the type style used by the object. The options are:

plain
bold
italic
bold italic

Possible values:

0 = 'regular'
1 = 'bold'
2 = 'italic'
3 = 'bold italic'

fontname [symbol]

Sets the object's font.

fontsize [float]

Sets the object's font size (in points).

Possible values:

'8'
'9'
'10'
'11'
'12'
'13'
'14'
'16'
'18'
'20'
'24'
'30'
'36'
'48'
'64'
'72'

hidden [int] (default: 0)

Toggles whether an object is hidden when the patcher is locked.

hint [symbol]

Sets the text that will be displayed in as a pop-up hint when the user moves the mouse over the object in a locked patcher.

ignoreclick [int] (default: 0)

Toggles whether an object ignores mouse clicks in a locked patcher.

patching_rect [4 floats] (default: 0. 0. 100. 0.)

Sets the position and size of the object in the patcher window.

position [2 floats]

g/s(set)

Sets the object's x and y position in both patching and presentation modes (if the object belongs to its patcher's presentation), leaving its size unchanged.

presentation [int] (default: 0)

Sets whether an object belongs to the patcher's presentation.

presentation_rect [4 floats] (default: 0. 0. 0. 0.)

Sets the x and y position and width and height of the object in the patcher's presentation, leaving its patching position unchanged.

rect [4 floats]

g/s(set)

Sets the x and y position and width and height of the object in both patching and presentation modes (if the object belongs to its patcher's presentation).

size [2 floats]

g/s(set)

Sets the object's width and height in both patching and presentation modes (if the object belongs to its patcher's presentation), leaving its position unchanged.

textcolor [float]

Sets the color for the object's text in RGBA format.

textjustification [int]

Sets the justification for the object's text.

Possible values:

0 = 'left'
1 = 'center'
2 = 'right'

varname [symbol]

Sets the patcher's scripting name, which can be used to address the object by name in pattr, scripting messages to thispatcher, and the js object.

Multichannel Group Attributes

chans [int]

The chans attribute sets the number of channels and instances in the MC wrapper object. If you want a fixed number of channels regardless of what is connected to the object, you could set chans via a typed-in argument, for example typing mc.cycle~ @chans 100 would create 100 instances of a cycle~ object inside the MC wrapper. If chans is 0, the wrapper object will auto-adapt to the number of channels in its input multichannel signals (using the maximum of all connected signals). For objects without connected multichannel signals, the chans attribute will need to have a non-zero value if you want more than one instance.

If chans is changed while the audio is on, the number of instances will not updated until audio is restarted. However, if chans is reduced while the audio is on, any extra channels will no longer process audio and will output a zero signal.

values [int]

The values attribute only applies to object creation time so it must be set via typed-in argument syntax. values sets the first (and only the first) initial argument for successive instances in the MC wrapper. For example, typing mc.cycle~ @chans 4 @values 50 60 70 80 would assign an initial frequency to the cycle~ instances inside the wrapper. The first instance would be assigned a frequency of 50, the second a frequency of 60, the third 70, and the fourth 80. Note that values does not determine the actual instance count; this can be done using the chans attribute. If there are more instances than elements for the values attribute, those instances are instantiated with the default value.

If you want to set a default initial value for all instances, simply type it as an argument before any typed-in attributes. For example, modifying our example above: mc.cycle~ 100 @chans 10 @values 50 60 70 80. In this example, the first four instances are set as before, but the next six are created with a frequency argument of 100.

To change instance values or attributes after the wrapper object has been created, use the setvalue, applyvalues, or replicatevalues messages.

replicate [int]

When replicate is enabled, input single-channel or multichannel signals containing fewer channels than the number instances in the MC wrapper object are repeated to fill all input channels. For example, when replicate is enabled and you connect a two-channel multichannel signal to the input of an MC wrapper object with four instances, channel 1 of the input will be repeated to channel 3, and channel 2 of the input will be repeated to channel 4. If replicate were disabled, channels 3 and 4 of the input would be set to zero.

target [int]

The target attribute sets a voice index for targeting specific wrapper instances. Subsequent messages are directed to an individual instance instead of all instances. It is strongly recommended you use the more reliable setvalue message instead of the target attribute. The voice index of setvalue will override the current setting of target. When target is 0, incoming messages are sent to all instances. When target is -1, incoming messages do nothing.

usebusymap [int]

When usebusymap is enabled, the MC wrapper controls whether individual instances process audio using a busy map maintained by either an mc.noteallocator~ or mc.voiceallocator~ object. When a channel in the busy map is marked as "free" or "released" no audio processing occurs by any instance on the channel corresponding to the voice index. When usebusymap is disabled, instances in the MC wrapper process audio at all times. This will also be true if usebusymap is enabled and there is no local or named busy map available. (See the busymapname attribute for a description of local and named busy maps).

zero [int]

When the zero attribute is enabled, channels in the MC wrapper due to the use of a busy map output zero signals. To save a small amount of CPU at the risk of loud and unpleasant noises due to uncleared signal data, you can disable zero. In this case, disabled channels in the MC wrapper do nothing to their output channels. If usebusymap is disabled or there is no active local or named busy map available, the setting of the zero attribute has no effect.

Conveniently, when usebusymap is enabled in mc.mixdown~ object, disabled channels are not mixed to the output. When unused signals from wrapped objects with zero disabled feed into mc.mixdown~, they will be ignored, reducing the risk of unpleasantness getting past the mix output.

busymapname [symbol]

When the usebusymap attribute is enabled, an MC wrapper object uses the local busy map of any mc.voiceallocator~ or mc.noteallocator~ in the same patcher by default. To use a named global busy map instead, set the busymapname attribute to the desired name.

Messages

list

Arguments

filter-index and settings [list]
A filter index followed by just a frequency or a frequency and a Q setting will set the particular filter addressed by the index number to the settings which follow it.

anything

Arguments

filter-index and settings [list]
A filter index followed by just a frequency or a frequency and a Q setting will set the particular filter addressed by the index number to the settings which follow it.

Q

Arguments

bandwidths [list]
In left inlet: The symbol Q, followed by a list consisting of an int and one or more floats, sets the Q factors of the filters, starting with the filter whose index is given by the first number. This filter's Q factor is set to the second number in the list. Any following numbers in the list set the Q factors of filters following the first designated one. Indices are zero-based.

QAll

Arguments

general-bandwidth [float]
In left inlet: The word QAll, followed by a float, sets the Q of all of the filters to the given floating-point value.

clear

Clears the fffb~ object's memory of previous inputs and outputs.

freq

Arguments

filter-frequencies [list]
In left inlet: The word freq, followed by a list consisting of an int and one or more floats, sets the center frequencies of the filters starting with the filter whose index is given by the first number. This filter's frequency is set to the second number in the list. Any following numbers in the list set the frequencies of filters following the first designated one. Indices are zero-based.

For example, the message freq 3 1974.0 333.0 1234.0 sets the frequency of the fourth filter to 1974Hz, the fifth filter to 333Hz, and the sixth filter to 1234Hz.

freqAll

Arguments

general-center-frequency [float]
in left inlet: The word freqAll, followed by a float, sets the center frequencies of all of the filters to the given floating-point value.

freqRatio

Arguments

frequency-ratios [list]
In left inlet: The word freqRatio, followed by a list of two or more numbers sets the center frequency of the first filter to the first value in the list, and sets the frequencies of the remaining filters by repeatedly multiplying the first value by the second, so that the ratio of frequencies of successive filters is the second value. For example, the message freqRatio 440. 2. sets the frequency of the first filter to 440Hz, the frequency of the second to 880Hz, the frequency of the third to 1760Hz, and so on.

If the second item in the list is the letter H rather than a number, the filters will be tuned in a harmonic series. For example, the message freqRatio 100 H sets the frequencies of the filters to 100Hz, 200Hz, 300Hz, 400Hz, and so on.

gain

Arguments

amplitudes [list]
In left inlet: The word gain, followed by a list consisting of an int and one or more floats, sets the gains of the filters starting with the filter whose index is given by the first number. This filter's gain is set to the second number in the list. Any following numbers in the list set the gains of filters following the first designated one. Indices are zero-based.

gainAll

Arguments

general-amplitude [float]
In left inlet: The word gainAll, followed by a float, sets the gain of all of the filters to the given floating-point value.

signal

The signal present at the left inlet is sent to all of the filters.

Multichannel Group Messages

deviate

Arguments

range [float]
message-name [symbol]
center-value [float]
Generate a random value for each channel around a center value. If no message name is provided then a float message is used by default.

exponential

Arguments

exponent [float]
base [float]
The exponential message generates an exponential series using the second argument as a base and the first argument as an exponent.

scaledexponential

Arguments

exponent [float]
base [float]
The scaledexponential message generates an exponential series using the second argument as a base and the first argument as an exponent. Values are scaled by the instance number, so the total range of the series is independent of the number of channels.

increment

Arguments

increment-amount [float]
message-name [symbol]
start-value [float]
Generate a increasing value for each channel starting at a specified value. If no message name is provided then a float message is used by default.

harmonic

Arguments

multiplier [float]
fundamental [float]
The harmonic message generate a harmonic series using the second argument as the fundamental frequency and the first argument as a multiplier.

subharmonic

Arguments

multiplier [float]
fundamental [float]
The subharmonic message generate a subharmonic series using the second argument as the fundamental frequency and the first argument as a multiplier.

spread

Arguments

boundary-value [float]
message-name [symbol]
other-boundary-value [float]
Generate a range of values distributed to each channel. If no message name is provided then a float message is used by default. The first boundary value is included in the range outputs, but the last boundary value is not.

spreadinclusive

Arguments

boundary-value [float]
message-name [symbol]
other-boundary-value [float]
Generate a range of values distributed to each channel. If no message name is provided then a float message is used by default. Both the first and last boundary values are included in the range outputs.

spreadexclusive

Arguments

boundary-value [float]
message-name [symbol]
other-boundary-value [float]
Generate a range of values distributed to each channel. If no message name is provided then a float message is used by default. Neither the first nor last boundary values are included in the range outputs.

spreadincludefirst

Arguments

boundary-value [float]
message-name [symbol]
other-boundary-value [float]
Generate a range of values distributed to each channel. If no message name is provided then a float message is used by default. The first boundary value is included in the range outputs, but the last boundary value is not. The spreadincludefirst message is the same as the spread message.

spreadincludesecond

Arguments

boundary-value [float]
message-name [symbol]
other-boundary-value [float]
Generate a range of values distributed to each channel. If no message name is provided then a float message is used by default. The first boundary value is not included in the range outputs, but the last boundary value is included.

setvalue

Arguments

channel [int]
message [symbol]
message arguments [list]
The word setvalue, followed by both a channel index (starting at 1) and any message that can be sent to the wrapped object, sends the message to an individual instance within the MC wrapper. setvalue 0, followed by a message, sends the message to all instances. The setvalue message can be used in any inlet.

applyvalues

Arguments

message-name [symbol]
values [list]
The word applyvalues, followed by an optional message name and one or more message arguments, sends individual values in the arguments successively to instances in the MC wrapper, starting with the first instance. For example, the message applyvalues 4 5 6 will send 4 to the first instance, 5 to the second instance, and 6 to the third instance. If there are more instances than arguments to applyvalues, the extra instances are unaffected.

replicatevalues

Arguments

message-name [symbol]
values [list]
The word replicatevalues, followed by an optional message name and one or more message arguments, sends individual values in the arguments successively to instances in the MC wrapper, starting with the first instance. Unlike applyvalues, the replicatevalues message continues sending values to successive instances, restarting with the first element, if it runs out of arguments to send. For example, replicatevalues 4 5 to an MC wrapper object with three instances will send 4 to the first instance, 5 to the second instance, and 4 to the third instance.

Output

signal

The output of each filter is provided at a separate outlet. The leftmost outlet is the output of the first filter.

See Also

Name Description
reson~ Resonant bandpass filter
Audio Filtering Audio Filtering