mc.phasor~
Description
Use the phasor~ object to generate sawtooth waves suitable for sample-accurate control and timing tasks. For smoother sounding sawtooth generation, use the bandlimited saw~ object instead. The ramp rate can be set by frequency (Hz), or as an interval using the tempo-relative Max time format syntax.
Arguments
initial-frequency [list]
Set the initial frequency in Hz, or as an interval using the tempo-relative Max time format syntax.
Attributes
frequency [Time Value]
Ramp rate or interval
jitter [float]
The jitter attributes sets the range of random frequency variation on each phase reset. The frequency deviation above and below will be 1/100th of the value of jitter times the frequency. Example: if the current frequency is 440 and jitter is 1.0, phasor~ will generate random frequencies between 439.56 and 440.44 Hz. jitter only applies when a signal is not connected to the frequency inlet and the lock attribute is disabled.
limit [float]
The limit attribute sets an absolute amount by which the frequency can vary from its set value as a result of a non-zero jitter attribute. If jitter is reduced, the frequency may be changed gradually to bring it closer to the set value.
lock [int]
When lock is set to 1, the phasor~ is synchronized to the Max (or Max for Live) transport. When the transport is off, the phasor~ will output a frequency of zero. For accurate timing, 'Scheduler in Overdrive' and 'in Audio Interrupt' must be enabled. These settings can be changed in 'Options'-> 'Audio Status'. The lock attribute will only accept frequencies specified using notevalues.
phaseoffset [float]
The phaseoffset attribute sets the initial phase when audio is turned on as well as the phase assigned when phasor~ receives the message. The phaseoffset is useful when decorrelating multiple instances within an mc.phasor~. If the phaseoffset attribute has never been set or the word phaseoffset is sent with no arguments, the initial phase will nor be changed when audio processing is started. When you set the phase with a in the right inlet, it is an immediate change but it only happens once. The phaseoffset attribute makes it possible to set up repeatable phase relationships between multiple phasor~ objects or when using mc.phasor~.
syncupdate [int]
When syncupdate is set to 1, the phasor~ frequency is only set at the end of its cycle, when the phase jumps to 0. In this mode, phasor~ will not instantly change its slope when it receives a frequency change, but will instead wait until the phase resets. This can prevent typical pitch glitches when reading from a buffer.
transport [symbol]
This attribute names a time transport. If frequency is specified using a 'relative' unit (for example: ticks, bars.beats.units, or notevalues), then the named transport is used to determine the frequency based on tempo, time-signature, and other related information. The default value is the global 'internal' transport.
Common Box Attributes
annotation [symbol]
Sets the text that will be displayed in the Clue window when the user moves the mouse over the object.
background [int] (default: 0)
Adds or removes the object from the patcher's background layer.
adds the object to the background layer, removes it. Objects in the background layer are shown behind all objects in the default foreground layer.color [4 floats]
Sets the color for the object box outline.
fontface [int]
Sets the type style used by the object. The options are:
plain
bold
italic
bold italic
Possible values:
0 = 'regular'
1 = 'bold'
2 = 'italic'
3 = 'bold italic'
fontname [symbol]
Sets the object's font.
fontsize [float]
Sets the object's font size (in points).
Possible values:
'8'
'9'
'10'
'11'
'12'
'13'
'14'
'16'
'18'
'20'
'24'
'30'
'36'
'48'
'64'
'72'
hidden [int] (default: 0)
Toggles whether an object is hidden when the patcher is locked.
hint [symbol]
Sets the text that will be displayed in as a pop-up hint when the user moves the mouse over the object in a locked patcher.
ignoreclick [int] (default: 0)
Toggles whether an object ignores mouse clicks in a locked patcher.
jspainterfile [symbol]
JS Painter File
patching_rect [4 floats] (default: 0. 0. 100. 0.)
Sets the position and size of the object in the patcher window.
position [2 floats]
Sets the object's x and y position in both patching and presentation modes (if the object belongs to its patcher's presentation), leaving its size unchanged.
presentation [int] (default: 0)
Sets whether an object belongs to the patcher's presentation.
presentation_rect [4 floats] (default: 0. 0. 0. 0.)
Sets the x and y position and width and height of the object in the patcher's presentation, leaving its patching position unchanged.
rect [4 floats]
Sets the x and y position and width and height of the object in both patching and presentation modes (if the object belongs to its patcher's presentation).
size [2 floats]
Sets the object's width and height in both patching and presentation modes (if the object belongs to its patcher's presentation), leaving its position unchanged.
textcolor [4 floats]
Sets the color for the object's text in RGBA format.
textjustification [int]
Sets the justification for the object's text.
Possible values:
0 = 'left'
1 = 'center'
2 = 'right'
varname [symbol]
Sets the patcher's scripting name, which can be used to address the object by name in pattr, scripting messages to thispatcher, and the js object.
Multichannel Group Attributes
chans [int]
The chans attribute sets the number of channels and instances in the MC wrapper object. To define a fixed number of channels regardless of what is connected to the object, set chans via a typed-in argument, for example typing would create 100 instances of a cycle~ object inside the MC wrapper. If chans is 0, the wrapper object will auto-adapt to the number of channels in its input multichannel signals (using the maximum of all connected signals). If an object does not have any multichannel signals connected to its inlets, the chans attribute will need to have a non-zero value if you want more than one instance.
If chans is changed while the audio is on, the number of instances will not change until audio is restarted. However, if chans is reduced while the audio is on, any extra channels will no longer process audio and will output a zero signal.
initialvalues [list]
The initialvalues attribute only applies to object creation time so it must be set via a typed-in argument. initialvalues sets the first (and only the first) initial argument for successive instances in the MC wrapper. For example, typing would assign an initial frequency to the cycle~ instances inside the wrapper. The first instance would be assigned a frequency of 50, the second a frequency of 60, the third 70, and the fourth 80. Note that initialvalues does not determine the actual instance count; this can be done using the chans attribute. If there are more instances than elements for the initialvalues attribute, those instances are instantiated with the default value.
To set a default value of an argument for all instances, type it as an argument before any typed-in attributes. For example, modifying our example above: . In this example, the first four instances are set as before, but the next six are created with a frequency argument of 100.
To change instance values or attributes after the wrapper object has been created, use the , , or messages.
values [list]
You can use values as an alternate name for the initialvalues attribute.
replicate [int]
When replicate is enabled, input single-channel or multichannel signals containing fewer channels than the number instances in the MC wrapper object are repeated to fill all input channels. For example, when replicate is enabled and you connect a two-channel multichannel signal to the input of an MC wrapper object with four instances, channel 1 of the input will be repeated to channel 3, and channel 2 of the input will be repeated to channel 4. If replicate were disabled, channels 3 and 4 of the input would be set to zero.
target [int]
The target attribute sets an index for targeting specific wrapper instances. Subsequent messages are directed to an individual instance instead of all instances. It is strongly recommended you use the more reliable message instead of the target attribute. The voice index of will override the current setting of target. When target is 0, incoming messages are sent to all instances. When target is -1, incoming messages do nothing. Note that target only affects messages, not setting attribute values.
usebusymap [int]
When usebusymap is enabled, the MC wrapper controls whether individual instances process audio using a busy map maintained by either an mc.noteallocator~ or mc.voiceallocator~ object. When a channel in the busy map is marked as "free" or "released" no audio processing occurs by any instance on the channel corresponding to the voice index. When usebusymap is disabled, instances in the MC wrapper process audio at all times. This will also be true if usebusymap is enabled and there is no local or named busy map available. (See the busymapname attribute for a description of local and named busy maps). For brevity the name bz can also be used.
zero [int]
When the zero attribute is enabled, channels in the MC wrapper due to the use of a busy map output zero signals. To save a small amount of CPU at the risk of loud and unpleasant noises due to uncleared signal data, you can disable zero. In this case, disabled channels in the MC wrapper do nothing to their output channels. If usebusymap is disabled or there is no active local or named busy map available, the setting of the zero attribute has no effect.
Conveniently, when usebusymap is enabled in mc.mixdown~ object, disabled channels are not mixed to the output. When unused signals from wrapped objects with zero disabled feed into mc.mixdown~, they will be ignored, reducing the risk of unpleasantness getting past the mix output.
busymapname [symbol]
When the usebusymap attribute is enabled, an MC wrapper object uses the local busy map of any mc.voiceallocator~ or mc.noteallocator~ in the same patcher by default. To use a named global busy map instead, set the busymapname attribute to the desired name. For brevity the name @bzname can also be used.
op [symbol]
Sets the function that will be used when the attrui set to edit the op attribute, you can see a handy menu of the 40+ possible functions, so you don't have to memorize their names.
message is set. If you usevoiceprob [float]
The voiceprob attribute is used when employing the $ or * arguments to the message. It determines the probability that the message will be sent. For example, if voiceprob is 0.9, there is a 90% chance the setvalue message will be sent to a randomly chosen voice.
Messages
bang
int
Arguments
In right inlet: Set the phase of the waveform (from 0 to 1). Signal output continues from this phase.
float
Arguments
In right inlet: Set the phase of the waveform (from 0 to 1). Signal output continues from this phase.
reset
signal
Multichannel Group Messages
deviate
Arguments
message-name [symbol]
center-value [float]
upper-range [float]
Example: will generate random values for the cutoff attribute of the objects in the wrapper centered around 1000 Hz (between 900 and 1100 Hz). sends messages to the objects in the wrapper with random values between 900 and 1200.
If no message name is provided, a message is used by default.
exponential
Arguments
message-name [symbol]
multiplier [float]
K * exp(-1 * N * channel) where channel starts at 0 for the first channel.
If the second argument is not present the default value is 1. Example: would generate, for four channels, values of 10, 3.678, 1.353, and 0.498. would generate 2, 5.437, 14.78, and 40.17.
If no message name is provided, a message is used by default.
scaledexponential
Arguments
message-name [symbol]
base [float]
K * exp(-1 * N * (channel / num_channels) where channel starts at 0 for the first channel.
If the second argument is not present the default value is 1. Example: would generate, for six channels, values of 2, 2.363, 2.791, 3.297, 3.895, 4.602. for four channels would generate 2, 2.568, 3.297, 4.324. provides a way to keep the range of the exponential series roughly the same independent of the number of channels.
If no message name is provided, a message is used by default.
increment
Arguments
message-name [symbol]
start-value [float]
Example: for four channels would generate 2, 7, 12, and 17.
If no message name is provided, a message is used by default.
harmonic
Arguments
message-name [symbol]
fundamental [float]
F * (1 + N * channel) where channel starts at 0 for the first channel.
Example: for five channels would generate 440, 880, 1320, 1760, and 2200. for four channels would generate 440, 660, 880, and 1100.
If no message name is provided, a message is used by default.
subharmonic
Arguments
message-name [symbol]
fundamental [float]
F / (1 + N * channel) where channel starts at 0 for the first channel.
Example: for five channels would generate 440, 220, 146.7, and 110.
If no message name is provided, a message is used by default.
spread
Arguments
message-name [symbol]
other-boundary-value [float]
Example: for four channels would generate 0, 2.5, 5, and 7.5.
If no message name is provided, a message is used by default.
spreadinclusive
Arguments
message-name [symbol]
other-boundary-value [float]
Example: for four channels would generate 0, 3.33, 6.66, and 10.
If no message name is provided, a message is used by default.
spreadexclusive
Arguments
message-name [symbol]
other-boundary-value [float]
Example: for four channels would generate 2, 4, 6, and 8.
If no message name is provided, a message is used by default.
spreadincludefirst
Arguments
message-name [symbol]
other-boundary-value [float]
Example: for four channels would generate 0, 2.5, 5, and 7.5.
If no message name is provided, a message is used by default.
spreadincludesecond
Arguments
message-name [symbol]
other-boundary-value [float]
Example: for four channels would generate 2.5, 5, 7.5, and 10.
If no message name is provided, a message is used by default.
decide
Arguments
message-name [symbol]
value [float]
Example: for four channels would generate 0, 0, 0, 0 because the probability of generating a 1 is zero. could generate 10, 0, 0, 10 if the randomly generated values exceeded 0.5 for the first and fourth channels.
If no message name is provided, a message is used by default.
randomrange
Arguments
message-name [symbol]
high-value [float]
If no message name is provided, a message is used by default.
generate
Arguments
message-name [symbol]
high-value [float]
ease.linear
Arguments
message-name [symbol]
high-value [float]
mid-point [float]
The messages generate an non-linear and inclusive range of values across the space of channels. When you use two number arguments, the first value will be the low end of the range and the second will be the high end of the range. For and functions, this means the low end value will be set for the first channel and the high end will be set for the last channel. For function variants, the high end will be set for the first channel and the low end will be set for the last channel.
When the messages are supplied with three numerical arguments, the first two specify the range as in the two-argument case, but the third argument, which will be constrained between 0 and 1, defines a mid point. Between the first channel and the channel closest to the mid point, the entire range of the function is applied. Between the mid point and the last channel, the range of the function is applied with the values reversed, creating a mirror image. The mirror image is exact when the third argument is 0.5, otherwise it will be biased toward 0 or 1. With a mid point of 1, the result is the same as if the third argument was not supplied at all. With a mid point of 0, the result is the same as if it was entirely reversed. In other words, it's as if the version of the function were used instead of the version that was originally specified -- or vice versa.
Available messages are: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and . Refer to the Ease Package documentation for details on these functions and demonstrations of their behavior.
If no message name is provided, a message is used by default.
smoothstep
Arguments
message-name [symbol]
high-value [float]
mid-point [float]
If no message name is provided, a message is used by default.
setvalue
Arguments
message [symbol]
message arguments [list]
Instead of a number, the message can also take a symbol indicating that the target channel index should be randomly chosen:
- urn object). Before chosing a channel, will also decide whether to send the message according to the current value of the voiceprob attribute. If voiceprob is 0.1, there is a 10% chance of sending the message. If voiceprob is 0.9, there is a 90% chance of sending the message. will choose a channel randomly but avoid duplicate choices until all channels have been chosen (similar to the Max
- urn object). Unlike it will always send the message. will choose a channel randomly but avoid duplicate choices until all channels have been chosen (similar to the Max
- random object). Before chosing a channel, will also decide whether to send the message according to the current value of the voiceprob attribute. If voiceprob is 0.1, there is a 10% chance of sending the message. If voiceprob is 0.9, there is a 90% chance of sending the message. will choose a channel randomly (similar to the Max
- random object). Unlike it will always send the message. will choose a channel randomly (similar to the Max
setvaluerange
Arguments
high channel [int]
message [symbol]
message arguments [list]
Example: , sends the message 50 to channels 1 - 4. If the second argument is -1, the message is sent to all subsequent channels. For example, sends the message 50 to all channels between 2 and the current number of voices.
Note: the random channel selection feature using , , , and does not work with the message.
applymessages
Arguments
applyvalues
Arguments
values [list]
replicatevalues
Arguments
values [list]
applynvalues
Arguments
values [list]
replicatenvalues
Arguments
values [list]
Output
signal
Waveform that increases from 0 to 1 repeatedly at the specified frequency.
See Also
Name | Description |
---|---|
2d.wave~ | Two-dimensional wavetable |
cycle~ | Sinusoidal oscillator |
line~ | Linear signal ramp generator |
saw~ | Antialiased sawtooth oscillator |
sync~ | Synchronize MSP with an external source |
techno~ | Signal-driven step sequencer |
transport | Control a clock |
trapezoid~ | Trapezoidal wavetable |
triangle~ | Triangle/ramp wavetable |
updown~ | Trapezoidal Function Generator With Constant Attack and Release |
wave~ | Variable size wavetable |
MSP Basics Tutorial 3: Wavetable Oscillator | MSP Basics Tutorial 3: Wavetable Oscillator |
MSP Sampling Tutorial 4: Variable-length Wavetable | MSP Sampling Tutorial 4: Variable-length Wavetable |