Package MC

mc.wave~

Variable size wavetable (multichannel)

Description

wave~ reads from a portion of a buffer~ to produce a repeating waveform, given a signal input that goes between 0 and 1 (for example, using a phasor~) to define the position in the buffer. When the wave~ object is instantiated as mcs.wave~ its outputs are combined into a single multichannel output but otherwise it functions identically to wave~.

Arguments

buffer-name[symbol]
optional

Obligatory. Names the buffer~ object whose sample memory is used by wave~ for its stored waveform. Note that if the underlying data in a buffer~ changes, the signal output of wave~ will change, since it does not copy the sample data in a buffer~. wave~ always uses the first channel of a multi-channel buffer~.

start-point[number]ms
optional

After the buffer~ name argument, you can type in a value for the start and end points of the waveform as millisecond offset from the beginning of a buffer~ object's sample memory. By default, the start point is 0. If you want to set a non-zero start point but retain the sample end as the waveform end point, use only a single typed-in argument after the buffer~ name. The wave~ object uses the buffer~ sampling rate to determine loop points. If a signal is connected to the start point (middle) inlet, the initial waveform start point argument is ignored.

end-point[number]ms
optional

After the start point argument, you can type in a value for the end point of the waveform, as a millisecond offsets from the beginning of a buffer~ object's sample memory. By default, the end point is the end of the sample. If a signal is connected to the end point (right) inlet, the initial waveform end point is ignored.

number-of-output-channels[int]
optional

Sets the number of output channels, which determines the number of outlets that the wave~ object will have. If the buffer~ object being played by wave~ has more channels than the number of outputs of wave~, the extra channels are not played. If the buffer~ object has fewer channels, the extra wave~ signal outputs are 0.

Attributes

interp[int]

The interpolation modes are:

Value - Description

0 - No interpolation. Wavetable interpolation is disabled using the interp 0 message.
1 - High-quality linear interpolation (default)
2 - Low-quality linear interpolation. This mode uses the interpolation method found in MSP 1.x versions of the wave~ object. While this mode is faster than mode 1, it cannot play buffer~ objects of arbitrary length and produces more interpolation artifacts.
3 - Cosine interpolation
4 - Cubic interpolation
5 - Spline interpolation
6 - Hermite interpolation
Possible values:

0 = 'None' ( No interpolation )
1 = 'Linear'
2 = 'Low-Quality'
3 = 'Cosine' ( Cosine interpolation )
4 = 'Cubic' ( Cubic interpolation )
5 = 'Spline' ( Spline interpolation )
6 = 'Hermite' ( Hermite interpolation )

interp_bias[float]

Set the bias parameter for Hermite interpolation

interp_tension[float]

Set the tension parameter for Hermite interpolation

Multichannel Group Attributes

chans[int]

The chans attribute sets the number of channels and instances in the MC wrapper object. To define a fixed number of channels regardless of what is connected to the object, set chans via a typed-in argument, for example typing mc.cycle~ @chans 100 would create 100 instances of a cycle~ object inside the MC wrapper. If chans is 0, the wrapper object will auto-adapt to the number of channels in its input multichannel signals (using the maximum of all connected signals). If an object does not have any multichannel signals connected to its inlets, the chans attribute will need to have a non-zero value if you want more than one instance.

If chans is changed while the audio is on, the number of instances will not change until audio is restarted. However, if chans is reduced while the audio is on, any extra channels will no longer process audio and will output a zero signal.

initialvalues[list]

The initialvalues attribute only applies to object creation time so it must be set via a typed-in argument. initialvalues sets the first (and only the first) initial argument for successive instances in the MC wrapper. For example, typing mc.cycle~ @chans 4 @initialvalues 50 60 70 80 would assign an initial frequency to the cycle~ instances inside the wrapper. The first instance would be assigned a frequency of 50, the second a frequency of 60, the third 70, and the fourth 80. Note that initialvalues does not determine the actual instance count; this can be done using the chans attribute. If there are more instances than elements for the initialvalues attribute, those instances are instantiated with the default value.

To set a default value of an argument for all instances, type it as an argument before any typed-in attributes. For example, modifying our example above: mc.cycle~ 100 @chans 10 @initialvalues 50 60 70 80 . In this example, the first four instances are set as before, but the next six are created with a frequency argument of 100.

To change instance values or attributes after the wrapper object has been created, use the setvalue , applyvalues , or replicatevalues messages.

values[list]

You can use values as an alternate name for the initialvalues attribute.

replicate[int]

When replicate is enabled, input single-channel or multichannel signals containing fewer channels than the number instances in the MC wrapper object are repeated to fill all input channels. For example, when replicate is enabled and you connect a two-channel multichannel signal to the input of an MC wrapper object with four instances, channel 1 of the input will be repeated to channel 3, and channel 2 of the input will be repeated to channel 4. If replicate were disabled, channels 3 and 4 of the input would be set to zero.

target[int]

The target attribute sets an index for targeting specific wrapper instances. Subsequent messages are directed to an individual instance instead of all instances. It is strongly recommended you use the more reliable setvalue message instead of the target attribute. The voice index of setvalue will override the current setting of target. When target is 0, incoming messages are sent to all instances. When target is -1, incoming messages do nothing. Note that target only affects messages, not setting attribute values.

usebusymap[int]

When usebusymap is enabled, the MC wrapper controls whether individual instances process audio using a busy map maintained by either an mc.noteallocator~ or mc.voiceallocator~ object. When a channel in the busy map is marked as "free" or "released" no audio processing occurs by any instance on the channel corresponding to the voice index. When usebusymap is disabled, instances in the MC wrapper process audio at all times. This will also be true if usebusymap is enabled and there is no local or named busy map available. (See the busymapname attribute for a description of local and named busy maps). For brevity the name bz can also be used.

zero[int]

When the zero attribute is enabled, channels in the MC wrapper due to the use of a busy map output zero signals. To save a small amount of CPU at the risk of loud and unpleasant noises due to uncleared signal data, you can disable zero. In this case, disabled channels in the MC wrapper do nothing to their output channels. If usebusymap is disabled or there is no active local or named busy map available, the setting of the zero attribute has no effect.

Conveniently, when usebusymap is enabled in mc.mixdown~ object, disabled channels are not mixed to the output. When unused signals from wrapped objects with zero disabled feed into mc.mixdown~, they will be ignored, reducing the risk of unpleasantness getting past the mix output.

busymapname[symbol]

When the usebusymap attribute is enabled, an MC wrapper object uses the local busy map of any mc.voiceallocator~ or mc.noteallocator~ in the same patcher by default. To use a named global busy map instead, set the busymapname attribute to the desired name. For brevity the name @bzname can also be used.

op[symbol]

Sets the function that will be used when the generate message is set. If you use attrui set to edit the op attribute, you can see a handy menu of the 40+ possible functions, so you don't have to memorize their names.

voiceprob[float]

The voiceprob attribute is used when employing the $ or * arguments to the setvalue message. It determines the probability that the setvalue message will be sent. For example, if voiceprob is 0.9, there is a 90% chance the setvalue message will be sent to a randomly chosen voice.

Common Box Attributes

Below is a list of attributes shared by all objects. If you want to change one of these attributes for an object based on the object box, you need to place the word sendbox in front of the attribute name, or use the object's Inspector.

annotation[symbol]

Sets the text that will be displayed in the Clue window when the user moves the mouse over the object.

background[int]: 0

Adds or removes the object from the patcher's background layer. background 1 adds the object to the background layer, background 0 removes it. Objects in the background layer are shown behind all objects in the default foreground layer.

color[4 floats]

Sets the color for the object box outline.

fontface[int]

Sets the type style used by the object. The options are:

plain
bold
italic
bold italic Possible values:

0 = 'regular'
1 = 'bold'
2 = 'italic'
3 = 'bold italic'

fontname[symbol]

Sets the object's font.

fontsize[float]

Sets the object's font size (in points). Possible values:

'8'
'9'
'10'
'11'
'12'
'13'
'14'
'16'
'18'
'20'
'24'
'30'
'36'
'48'
'64'
'72'

hidden[int]: 0

Toggles whether an object is hidden when the patcher is locked.

hint[symbol]

Sets the text that will be displayed in as a pop-up hint when the user moves the mouse over the object in a locked patcher.

ignoreclick[int]: 0

Toggles whether an object ignores mouse clicks in a locked patcher.

jspainterfile[symbol]

You can override the default appearance of a user interface object by assigning a JavaScript file with code for painting the object. The file must be in the search path.

patching_rect[4 floats]: 0. 0. 100. 0.

Sets the position and size of the object in the patcher window.

position[2 floats]
write-only

Sets the object's x and y position in both patching and presentation modes (if the object belongs to its patcher's presentation), leaving its size unchanged.

presentation[int]: 0

Sets whether an object belongs to the patcher's presentation.

presentation_rect[4 floats]: 0. 0. 0. 0.

Sets the x and y position and width and height of the object in the patcher's presentation, leaving its patching position unchanged.

rect[4 floats]
write-only

Sets the x and y position and width and height of the object in both patching and presentation modes (if the object belongs to its patcher's presentation).

size[2 floats]
write-only

Sets the object's width and height in both patching and presentation modes (if the object belongs to its patcher's presentation), leaving its position unchanged.

textcolor[4 floats]

Sets the color for the object's text in RGBA format.

textjustification[int]

Sets the justification for the object's text. Possible values:

0 = 'left'
1 = 'center'
2 = 'right'

varname[symbol]

Sets the patcher's scripting name, which can be used to address the object by name in pattr, scripting messages to thispatcher, and the js object.

Messages

int

In middle or right inlets: Numbers can be used instead of signal objects to control the start and end points of the waveform, provided a signal is not connected to the inlet that receives the number. The wave~ object uses the buffer~ sampling rate to determine loop points.

Arguments:
  • start/end-point [int]

float

In middle or right inlets: Numbers can be used instead of signal objects to control the start and end points of the waveform, provided a signal is not connected to the inlet that receives the number. The wave~ object uses the buffer~ sampling rate to determine loop points.

Arguments:
  • start/end-point [float]

list

A list message sent to the left inlet with two values will set the start and end points of the waveform in milliseconds. The first value determines the start point and the second value determines the endpoint.

Arguments:
  • start/end-point [list]

(mouse)

Double-clicking on the wave~ object will open a window that displays the audio file loaded in the buffer associated with the object.

set

The word set , followed by a symbol , sets the buffer~ used by wave~ for its stored waveform. The symbol can optionally be followed by two values setting new waveform start and end points. If the values are not present, the default start and end points (the start and end of the sample) are used. If signal objects are connected to the start and/or end point inlets, the start and/or end point values are ignored.

Arguments:
  • buffer-name [symbol]
  • start-point (millisecond-offset) [float]
  • end-point (millisecond-offset) [float]

signal

In left inlet: Input signal values progressing from 0 to 1 are used to scan a specified range of samples in a buffer~ object. The output of a phasor~ can be used to control wave~ as an oscillator, treating the range of samples in the buffer~ as a repeating waveform. However, note that when changing the frequency of a phasor~ connected to the left inlet of wave~, the perceived pitch of the signal coming out of wave~ may not correspond exactly to the frequency of phasor~ itself if the stored waveform contains multiple or partial repetitions of a waveform. You can invert the phasor~ to play the waveform backwards.

In middle inlet: The start of the waveform as a millisecond offset from the beginning of a buffer~ object's sample memory.

In right inlet: The end of the waveform as a millisecond offset from the beginning of a buffer~ object's sample memory.

Multichannel Group Messages

deviate

Generate a random value for each channel around a center value. An optional number after the center value specifies the upper range size so it can be different from the lower range size.
Example: deviate 100 cutoff 1000 will generate random values for the cutoff attribute of the objects in the wrapper centered around 1000 Hz (between 900 and 1100 Hz). deviate 100 1000 200 sends float messages to the objects in the wrapper with random values between 900 and 1200.
If no message name is provided, a float message is used by default.

Arguments:
  • range [float]
  • message-name [symbol]
  • center-value [float]
  • upper-range [float]

exponential

The exponential message generates an exponential series. The first argument is N and the second (optional) argument is K in the following expression:
K * exp(-1 * N * channel) where channel starts at 0 for the first channel.
If the second argument is not present the default value is 1. Example: exponential 1 10 would generate, for four channels, values of 10, 3.678, 1.353, and 0.498. exponential -1 2 would generate 2, 5.437, 14.78, and 40.17.
If no message name is provided, a float message is used by default.

Arguments:
  • exponent [float]
  • message-name [symbol]
  • multiplier [float]

scaledexponential

The scaledexponential message generates an exponential series with the exponent scaled by the total number of channels. The first argument is N and the second (optional) argument is K in the following expression:
K * exp(-1 * N * (channel / num_channels) where channel starts at 0 for the first channel.
If the second argument is not present the default value is 1. Example: exponential -1 2 would generate, for six channels, values of 2, 2.363, 2.791, 3.297, 3.895, 4.602. scaledexponential -1 2 for four channels would generate 2, 2.568, 3.297, 4.324. scaledexponential provides a way to keep the range of the exponential series roughly the same independent of the number of channels.
If no message name is provided, a float message is used by default.

Arguments:
  • exponent [float]
  • message-name [symbol]
  • base [float]

increment

The increment message generates a range of increasing values for each channel. The range starts at the second argument and increments each channel's value by the first argument. If no message name is provided then a float message is used by default.
Example: increment 5 2 for four channels would generate 2, 7, 12, and 17.
If no message name is provided, a float message is used by default.

Arguments:
  • increment-amount [float]
  • message-name [symbol]
  • start-value [float]

harmonic

The harmonic message generates a harmonic series using the second argument as the fundamental frequency ( F ) and the first argument as a multiplier ( N ) in the following expression:
F * (1 + N * channel) where channel starts at 0 for the first channel.
Example: harmonic 1 440 for five channels would generate 440, 880, 1320, 1760, and 2200. harmonic 0.5 440 for four channels would generate 440, 660, 880, and 1100.
If no message name is provided, a float message is used by default.

Arguments:
  • multiplier [float]
  • message-name [symbol]
  • fundamental [float]

subharmonic

The subharmonic message generates a subharmonic series using the second argument as the fundamental frequency ( F ) and the first argument as a multiplier ( N ) in the following expression:
F / (1 + N * channel) where channel starts at 0 for the first channel.
Example: subharmonic 1 440 for five channels would generate 440, 220, 146.7, and 110.
If no message name is provided, a float message is used by default.

Arguments:
  • multiplier [float]
  • message-name [symbol]
  • fundamental [float]

spread

The spread message generates a range of values distributed to each channel. The first boundary value is included in the range outputs, but the second boundary value is not (see spreadinclusive , spreadexclusive , and spreadincludesecond for other options).
Example: spread 0 10 for four channels would generate 0, 2.5, 5, and 7.5.
If no message name is provided, a float message is used by default.

Arguments:
  • boundary-value [float]
  • message-name [symbol]
  • other-boundary-value [float]

spreadinclusive

The spreadinclusive message generates a range of values distributed to each channel. Both the first and second boundary values are included in the range outputs.
Example: spreadinclusive 0 10 for four channels would generate 0, 3.33, 6.66, and 10.
If no message name is provided, a float message is used by default.

Arguments:
  • boundary-value [float]
  • message-name [symbol]
  • other-boundary-value [float]

spreadexclusive

The spreadexclusive message generates a range of values distributed to each channel. Neither the first and second boundary values are included in the range outputs.
Example: spreadexclusive 0 10 for four channels would generate 2, 4, 6, and 8.
If no message name is provided, a float message is used by default.

Arguments:
  • boundary-value [float]
  • message-name [symbol]
  • other-boundary-value [float]

spreadincludefirst

The spreadincludefirst message generates a range of values distributed to each channel. It is the same as the spread message. The first boundary value is included in the range outputs, but the second boundary value is not.
Example: spreadincludefirst 0 10 for four channels would generate 0, 2.5, 5, and 7.5.
If no message name is provided, a float message is used by default.

Arguments:
  • boundary-value [float]
  • message-name [symbol]
  • other-boundary-value [float]

spreadincludesecond

The spreadincludefirst message generates a range of values distributed to each channel. It is the same as the spread message. The first boundary value is not included in the range outputs, but the second boundary value is included.
Example: spreadincludesecond 0 10 for four channels would generate 2.5, 5, 7.5, and 10.
If no message name is provided, a float message is used by default.

Arguments:
  • boundary-value [float]
  • message-name [symbol]
  • other-boundary-value [float]

decide

The decide message generates a uniformly distributed random value between 0 and 1 for each channel; if the value is less than the probability value set by the first argument, the second argument is assigned to the channel. If the random value is greater than the probability value, 0 is asigned to the channel. (If a second argument is not present, 1 is used by default.)
Example: decide 0 10 for four channels would generate 0, 0, 0, 0 because the probability of generating a 1 is zero. decide 0.5 10 could generate 10, 0, 0, 10 if the randomly generated values exceeded 0.5 for the first and fourth channels.
If no message name is provided, a float message is used by default.

Arguments:
  • probability [float]
  • message-name [symbol]
  • value [float]

randomrange

The randomrange message generates a uniformly distributed random range of values for all channels between the first argument and the second argument.
If no message name is provided, a float message is used by default.

Arguments:
  • low-value [float]
  • message-name [symbol]
  • high-value [float]

generate

The generate message runs the function whose name is stored in the op attribute. Arguments passed to generate will be given to the function that is called. Example: if op is set to deviate , generate 50 440 is the same as sending the message deviate 50 440 .

Arguments:
  • low-value [float]
  • message-name [symbol]
  • high-value [float]

ease.linear

The MC wrapper provides access to the easing functions found in the Ease Package. These are accessed with message names consisting of ease. concatenated with the easing function name. For example, to use the in_out_circular function, send the message ease.in_out_circular .
The ease messages generate an non-linear and inclusive range of values across the space of channels. When you use two number arguments, the first value will be the low end of the range and the second will be the high end of the range. For in_ and in_out_ functions, this means the low end value will be set for the first channel and the high end will be set for the last channel. For out_ function variants, the high end will be set for the first channel and the low end will be set for the last channel.
When the ease messages are supplied with three numerical arguments, the first two specify the range as in the two-argument case, but the third argument, which will be constrained between 0 and 1, defines a mid point. Between the first channel and the channel closest to the mid point, the entire range of the function is applied. Between the mid point and the last channel, the range of the function is applied with the values reversed, creating a mirror image. The mirror image is exact when the third argument is 0.5, otherwise it will be biased toward 0 or 1. With a mid point of 1, the result is the same as if the third argument was not supplied at all. With a mid point of 0, the result is the same as if it was entirely reversed. In other words, it's as if the out_ version of the function were used instead of the in_ version that was originally specified -- or vice versa.
Available messages are: ease.linear , ease.in_back , ease.in_out_back , ease.out_back , ease.in_bounce , ease.in_out_bounce , ease.out_bounce , ease.in_circular , ease.in_out_circular , ease.out_circular , ease.in_cubic , ease.in_out_cubic , ease.out_cubic , ease.in_elastic , ease.in_out_elastic , ease.out_elastic , ease.in_exponential , ease.in_out_exponential , ease.out_exponential , ease.in_quadratic , ease.in_out_quadratic , ease.out_quadratic , ease.in_quartic , ease.in_out_quartic , ease.out_quartic , ease.in_quintic , ease.in_out_quintic , ease.out_quintic , ease.in_sine , ease.in_out_sine , and ease.out_sine . Refer to the Ease Package documentation for details on these functions and demonstrations of their behavior.
If no message name is provided, a float message is used by default.

Arguments:
  • low-value [float]
  • message-name [symbol]
  • high-value [float]
  • mid-point [float]

smoothstep

The smoothstep function works analogously to the ease messages to generate an inclusive non-linear range of values, but uses the smoothstep function to generate a non-linear ramp. Refer to the documentation of the ease messages for more information.
If no message name is provided, a float message is used by default.

Arguments:
  • low-value [float]
  • message-name [symbol]
  • high-value [float]
  • mid-point [float]

setvalue

The word setvalue , followed by both a channel index (starting at 1) and any message that can be sent to the wrapped object, sends the message to an individual instance within the MC wrapper. setvalue 0 , followed by a message, sends the message to all instances. The setvalue message can be used in any inlet.
Instead of a number, the setvalue message can also take a symbol indicating that the target channel index should be randomly chosen:

  • setvalue * will choose a channel randomly but avoid duplicate choices until all channels have been chosen (similar to the Max urn object). Before chosing a channel, * will also decide whether to send the message according to the current value of the voiceprob attribute. If voiceprob is 0.1, there is a 10% chance of sending the message. If voiceprob is 0.9, there is a 90% chance of sending the message.
  • setvalue + will choose a channel randomly but avoid duplicate choices until all channels have been chosen (similar to the Max urn object). Unlike * it will always send the message.
  • setvalue $ will choose a channel randomly (similar to the Max random object). Before chosing a channel, $ will also decide whether to send the message according to the current value of the voiceprob attribute. If voiceprob is 0.1, there is a 10% chance of sending the message. If voiceprob is 0.9, there is a 90% chance of sending the message.
  • setvalue # will choose a channel randomly (similar to the Max random object). Unlike $ it will always send the message.
Arguments:
  • channel [int]
  • message [symbol]
  • message arguments [list]

setvaluerange

The word setvaluerange , followed by a low and high channel index (starting at 1) and any message that can be sent to the wrapped object, sends the message to the specified range of channels.
Example: setvaluerange 1 4 50 , sends the message 50 to channels 1 - 4. If the second argument is -1, the message is sent to all subsequent channels. For example, setvaluerange 2 -1 50 sends the message 50 to all channels between 2 and the current number of voices.
Note: the random channel selection feature using * , + , $ , and # does not work with the setvaluerange message.

Arguments:
  • low channel [int]
  • high channel [int]
  • message [symbol]
  • message arguments [list]

applymessages

The word applymessages , followed by one or more numbers and/or symbols, sends individual messages successively to instances in the MC wrapper, starting with the first instance. For example, the message applymessages 0 bang will send the '0' message to the first instance, and the 'bang' message to the second instance. If there are more instances than arguments to applymessages , the extra instances are unaffected.

Arguments:
  • messages [list]

applyvalues

The word applyvalues , followed by an optional message name and one or more message arguments, sends individual values in the arguments successively to instances in the MC wrapper, starting with the first instance. For example, the message applyvalues 4 5 6 will send 4 to the first instance, 5 to the second instance, and 6 to the third instance. If there are more instances than arguments to applyvalues , the extra instances are unaffected.

Arguments:
  • message-name [symbol]
  • values [list]

replicatevalues

The word replicatevalues , followed by an optional message name and one or more message arguments, sends individual values in the arguments successively to instances in the MC wrapper, starting with the first instance. Unlike applyvalues , the replicatevalues message continues sending values to successive instances, restarting with the first element, if it runs out of arguments to send. For example, replicatevalues 4 5 to an MC wrapper object with three instances will send 4 to the first instance, 5 to the second instance, and 4 to the third instance.

Arguments:
  • message-name [symbol]
  • values [list]

applynvalues

Whereas applyvalues can only set one value, the message applynvalues permits sending a message or setting an attribute with multiple values to instances in the MC wrapper, starting with the first instance. This is helpful for messages that require multiple values, such as the list message to wave~ to set start/end points. The message syntax is [applynvalues N value1, value2 etc.] where N is the number of values to set for each instance. For example, the message applynvalues 2 500 600 900 1000 will send 500 600 to the first instance and 900 1000 to the second instance. If there are more instances than specified in applynvalues , the extra instances are unaffected.

Arguments:
  • message [int]
  • values [list]

replicatenvalues

Whereas replicatevalues can only set one value, the message replicatenvalues permits sending a message or setting an attribute with multiple values to instances in the MC wrapper, starting with the first instance. This is helpful for messages that require multiple values, such as the list message to wave~ to set start/end points. The message syntax is [replicatenvalues N value1, value2 etc.] where N is the number of values to set for each instance. Unlike applynvalues , the replicatenvalues message continues sending values to successive instances, restarting with the first group, if it runs out of arguments to send. For example, replicatenvalues 2 500 600 900 1000 to an MC wrapper object with three instances will send 500 600 to the first instance, 900 1000 to the second instance, and 500 600 to the third instance.

Arguments:
  • message [int]
  • values [list]

Output

signal

The portion of the buffer~ specified by the wave~ object's start and end points is scanned by signal values ranging from 0 to 1 in the wave~ object's inlet, and the corresponding sample value from the buffer~ is sent out the wave~ object's outlet. If the signal received in wave's inlet is a repeating signal such as a sawtooth wave from a phasor~, the resulting output will be a waveform (excerpted from the buffer~) repeating at the frequency corresponding to the repetition of the input signal.

See Also

Name Description
2d.wave~ Two-dimensional wavetable
buffer~ Store audio samples
buffir~ buffer-based FIR filter
groove~ Variable-rate looping sample playback
phasor~ Generate sawtooth signals
play~ Position-based sample playback
sync~ Synchronize MSP with an external source