Tutorial 32: Camera View
This tutorial shows you how to set up the camera view and how to position and rotate GL objects using jit.gl.handle. It will cover the group of components which together make up the camera view: the camera's position, the point at which the camera is looking, the "up" vector, the type of projection, the lens angle, and the clipping planes.
In the lower left of the patch, there is a jit.window object named . This window will be the destination for our OpenGL drawing. You will notice that the jit.window object has an attribute argument to specify the creation of a depth buffer. A depth buffer allows the OpenGL renderer to determine which drawing command is visible at a given pixel based on the proximity of the geometry to the camera. Without depth buffering, OpenGL uses what is often referred to as the "Painter's Algorithm"--i.e. the visible results of drawing commands correspond to sequence in which they are performed.
The GL Context
We now see large gray circle and some yellow lines. These are being drawn by two instances of the jit.gl.gridshape object. The jit.gl.gridshape object can draw a variety of 3D shapes, including spheres, tori, cylinders, cubes, planes, and circles. The grey circle we see drawn in the window is actually a sphere and is being drawn by the section of the patch labeled Grey Shape. The yellow lines are actually a plane and are being drawn by the section of the patch labeled Yellow Plane. The yellow plane is being rendered with which means that the shape is being drawn with outlined polygons rather than filled polygons for both the front and back faces of the plane. If you switch off the toggle object connected to the message box , you can see the plane rendered with filled polygons.
Camera Position
You should see a red line from the center of the window to the right of the window, a green line from the center of the window to the top of the window. These are the x and y axes, respectively. They help us to determine the origin of our scene. Since the default camera position is at [0.,0.,2.], and the default
position is [0.,0.,0.], the camera is looking directly at the origin of our scene along the z axis. Hence, we do not see the blue line which represents the z axis along which the camera is looking.So far, the y axis has always been pointing upwards with respect to the camera view. This is because the default "up" vector is [0.,1.,0.]—i.e. the unit y vector.
You may have noticed, as we've moved the camera further away from the origin, that the torus, plane, and axes have become smaller. This is because the default viewing mode uses a perspective projection, which is similar to the way we see things in the 3-dimensional world we inhabit. If you are familiar with camera lenses, you may also know that depending upon the angle of the lens, objects will be smaller as the lens angle increases to accommodate a larger field of view. Similarly, we can change the lens angle of our perspective transformation to increase the field of view, and in doing so the objects will become yet smaller.
Orthographic Projection
Another type of projection supported by OpenGL is the orthographic projection. This type of projection does not diminish the size of objects based on camera position. The orthographic projection is common to 3D CAD software used for tasks such as mechanical engineering. Many early video games like Q-Bert also used an orthographic projection. You can switch between the perspective projection and the orthographic projection by clicking on the toggle box labeled orthographic projection. The message will turn on orthographic projection. If you try moving the camera with orthographic projection turned on, you should not see the objects become any smaller. However, changing the lens angle will still change the field of view, and the size of objects relative to the view.
Clipping Planes
Let's examine the clipping planes that determine the extent along the camera's view that will be rendered. OpenGL has a near clipping plane and a far clipping plane, and only geometry which lies in between these two planes will be rendered. These clipping planes are specified in units of distance from the camera along the viewing vector using the
and messages. By default, the near clipping plane is set to 0.1 and the far clipping plane is set to 100.So far, the camera has always been looking at the origin [0.,0.,0.]. If we change the
position's x value to , the camera is now looking at [3.,0.,0.].Handles
Not only did this send the jit.gl.gridshape object, the jit.gl.handle object requires a named draw context into which to draw. Unlike the jit.gl.gridshape object, it's also a user interface object that translates mouse activity in the draw context's destination to Max messages.
message to the torus, but also to the jit.gl.handle object. The jit.gl.handle object is a GL group object that uses mouse information to move and rotate objects in the 3D scene. Like theIn this patch, messages from the jit.gl.handle object are sent to the jit.gl.gridshape object. They are also sent to the route object and formatted so you can see exactly what is being sent. These messages are the only communication from the jit.gl.handle object—there is nothing going on behind the scenes.
If you click on the torus and drag the mouse, you will see the torus being rotated by the jit.gl.handle object as though it were a virtual trackball. If you hold down the command key while dragging, you can move the torus left, right, up, and down. If you hold the option key as you drag, you can move the torus towards you or away from you. Using the shift key as you perform any of the above mouse actions will constrain the action to a single axis.
Summary
We have examined the several components which make up an OpenGL scene's camera view, and the necessary attributes of the jit.gl.render object which control them. The attribute specifies the camera position; specifies the upwards vector; specifies the position at which the camera is looking; specifies whether to use an orthographic or perspective projection; and and specify the clipping planes. Lighting and smooth shading attributes can be enabled by setting the and attributes of the GL group object handling the geometry (in this case the jit.gl.gridshape object).
The jit.gl.handle object lets us rotate and reposition OpenGL objects using the mouse and the modifier keys on the keyboard. The jit.gl.handle object takes the name of a valid draw context to attach itself to, and sends messages to any connected object that is also using that context, setting the and attributes of that object.
See Also
Name | Description |
---|---|
Working with OpenGL | Working with OpenGL |
Video and Graphics Tutorial 4: Adding 3D Objects | Video and Graphics 4: Adding 3D Objects |
GL Contexts | GL Contexts |
jit.gl.gridshape | Generate simple geometric shapes as a grid |
jit.gl.handle | Use mouse movement to control position/rotation |
jit.gl.render | Render Jitter OpenGL objects |
jit.window | Display data in a window |